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Figure 1: Example visualization of the eight motions of a tennis forehand shot. (a)(b) The input data contain the spatial and
orientational trajectories of body parts from a set of motions. (c) The output visualization contains the selected poses for key
timings as well as spatial and orientational volumes for the body parts.

ABSTRACT
The understanding of human motion is important in many areas
such as sports, dance, and animation. In this paper, we propose a
method for visualizing the manifold of human motions. A motion
manifold is defined by a set of motions in a specific motion form.
Our method visualizes the ranges of time-varying positions and
orientations of a body part by generating volumetric shapes for
representing them. It selects representative keyposes from the key-
poses of all input motions to visualize the range of keyposes at each
key timing. A geometrical volume that contains the trajectories
from all input motions is generated for each body part. In addition,
a geometrical volume that contains the orientations from all input
motions is generated for a sample point on the trajectory. The user
can understand the motion manifold by visualizing these motion
volumes. In this paper, we present some experimental examples for
a tennis shot form.
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1 INTRODUCTION
The understanding of human motion is important in many areas
such as sports, dance, and animation. In these areas, people often
need to understand the variations in the motions of a specific form
rather than just a single motion. For example, for a tennis trainee
to practice a shot form, he or she needs to understand the manifold
of the good motions rather than a single ideal motion because there
are some variations even in the good motions that are performed by
experts. However, because human motions are high-dimensional
space-time data, it is difficult to visualize them in a way that people
can easily understand. Playing back a motion clip as an animation is
a commonway to view amotion. However, because only one pose is
displayed at a time during animation, it is difficult to understand the
characteristics of the motion. To solve this problem, many methods
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for depicting a motion as a single image have been developed [Assa
et al. 2005; Bouvier-Zappa et al. 2007; Li et al. 2016; Yasuda et al.
2008]. However, these methods are intended for dealing with a
single motion and cannot visualize the manifold of a motion form.

In this paper, we propose a method for visualizing the manifold of
human motions. A motion manifold is de�ned by a set of motions in
a speci�c motion form. Our method visualizes the ranges of the time-
varying positions and orientations of a body part by generating
volumetric shapes for representing them. It selects representative
keyposes from the keyposes of all input motions to visualize the
range of keyposes at each key timing. A geometrical volume that
contains the trajectories from all input motions is generated for
each body part. In addition, geometrical volume that contains the
orientations from all input motions is generated for a sample point
on the trajectory. The user can understand the motion manifold by
visualizing these motion volumes. The generated three-dimensional
(3D) shapes can be rendered as an image. The viewing position
and orientation can be freely chosen by the user. An example of
our results is shown in Figure 1. In this paper, we present some
experimental examples for a tennis shot form.

The remainder of this paper is organized as follows. Section 2
review related work, Section 3 explains the input motion data, and
Section 4 describes our method for generating motion volumes.
Section 5 and 6 present the experimental results and discussion,
respectively. Finally, Section 7 concludes the paper.

2 RELATED WORK
Because it is di�cult for an observer to understand a motion when
it is played back to him or her, many methods have been developed
for depicting a motion as a single image [Cutting 2002; Li et al.
2016]. Drawing a series of important poses is one approach. Many
methods have been developed for choosing important poses in a
motion and drawing them. Assa et al. [2005] proposed a method for
projecting a motion into a low-dimensional space to �nd important
poses. Yasuda et al. [2008] proposed a method for drawing important
poses on a timeline. The colors of the poses are determined by the
direction in which they face. Bouvier-Zappa et al. [Bouvier-Zappa
et al. 2007] proposed a method for adding visual cues to poses
such as motion arrows, noise waves, and stroboscopic motion to
represent the movements at each pose. These methods are intended
to visualize one complex motion as an image and cannot be used
to visualize a motion manifold that is de�ned by a set of motions.

Some methods have been developed for visualizing a large num-
ber of di�erent motions [Hu et al. 2010; Jang et al. 2014; Sakamoto
et al. 2004; Shen et al. 2017]. These methods are intended for cat-
egorizing the motions into groups and depicting the di�erences
between them. Recently, Shen et al. [2019] proposed a metric for
evaluating the similarity of motions in terms of the interaction be-
tween two characters or between a character and an object. These
methods are also not suitable for visualizing motion manifolds.

The aim of most previous studies is to generate 2D images. In
contrast, Zhang et al. [2018] proposed the MoSculp system, which
generate 3D shapes for representing the trajectories of body parts
from a motion sequence. They only depict the time-varying po-
sitions of body parts and cannot depict their time-varying orien-
tations. Their method focuses on analyzing video for generating

shapes. Moreover, their method is intended for a single motion and
cannot be used to visualize motion manifolds. Kazi et al. [2016]
developed a tool for creating 3D shapes that includes poses and vi-
sual e�ects representing movements. However, the 3D shapes must
be authored by the user and they are not considered to represent
motion manifolds. Our method also generates 3D shapes, but it is
intended for representing the motion manifold of a set of motions,
including not only the spatial but also the orientational ranges of
body parts.

3 MOTION DATA
Our method takes a set of motions in a speci�c motion form as
input. Instead of example motions, a generative statistical model
[Lau et al. 2009; Min et al. 2009] that is constructed from a set
of motions can also be used. Our method can take a number of
example motions that are generated from such a statistical model.

Given a human body model, a pose is represented by the position
and orientation of the pelvis as well as the rotations of all joints.
A position is represented by a 3D vector. There are several ways
to represent an orientation or rotation, such as a combination of
rotational angles, 3� 3 matrix, or quaternion. Our method works
with any of these representations, so we used a 3� 3 matrix in
our implementation. A motion is represented by a series of poses.
The positions and orientations of the body parts in any frame
are computed based on the body model and pose using forward
kinematics. The spatial and orientational trajectories of the body
parts are represented by a series of positions and orientations, as
shown in Figure 1 (b).

Our method assumes that the same number of key timings are
speci�ed for all the input motions. The key timings represent the
important moments of the motions. For example, for the tennis
forehand shot in Figure 1, three key timings were used: take-back,
impact, and follow-through. These keyposes are commonly used
in the training of tennis shot forms [Oshita et al. 2019]. The key
timings can be either manually speci�ed or automatically detected.
To detect key timings, either some general methods such as [Assa
et al. 2005] or motion-speci�c methods such as [Oshita et al. 2019]
can be used. The appropriate number of key timings and method of
detecting them depend on the target motion form and application.

We assume that all input motions are based on the same body
model. In theory, motions from di�erent body models can be treated
together by applying a motion retargeting [Baek et al. 2003], as
long as the di�erence is acceptable. However, motion retargeting is
not explored in this paper.

We use only skeletal motions and do not use a skinned shape
model. A pose can be drawn by using a stick �gure with thickness
parameters. Alternatively, a skinned shape model can be used for
depicting poses, which may improve the visual quality. However,
it highly depends on the quality of the skinned shape model, and
making such a model for each set of motions is time consuming.
Therefore, the use of a skinned shape model is not explored in this
paper.



Motion Volume: Visualization of Human Motion Manifolds VRCAI '19, November 14�16, 2019, Brisbane, QLD, Australia

4 MOTION VOLUME GENERATION
4.1 Overview
This section describes our method for generating geometrical model
for a motion manifold. The positions and orientations of body
parts at each frame of each motion can be computed from the
pose of the frame using forward kinematics. Our method generates
shapes to represent the ranges of each keypose as well as the spatial
and orientational ranges of each body part. Although the motion
volumes can be generated for all body parts, in this paper, they
are generated for the primary body parts: the pelvis, chest, head,
right and left hands, and right and left feet, as shown in Figure 1. In
practice, the body parts for which motion volumes are generated
can be chosen depending on the target motion form and application.

Our method generates static shapes for visualizing this infor-
mation and does not visualize temporal information. Neither the
times of the sampling poses and points nor the spatial and rota-
tional velocities of the body parts are considered. Although it is
possible to use the colors of shapes for representing the temporal
information, this is not explored in this paper. Because our method
generates geometrical shapes and does not use their colors, the
colors of shapes can be used for any other purpose depending on
the applications and users. For example, the colors can be used for
representing additional information such as temporal properties or
for identifying di�erent keyposes and body parts.

The motion manifold of input motions can be visualized by draw-
ing the keyposes and the shapes of the spatial and orientational
volumes of the body parts. However, drawing the shapes of all body
parts sometimes makes it harder to see and may not be appropriate,
as shown in Figure 1. The user can choose one or a few key timings
and body parts on which to focus. In addition, the camera position
can also be controlled by the user so that they can choose a point
of focus. This makes our method suitable for interactive visualiza-
tion because the user can freely change the camera position, key
timings, and body parts. Moreover, the user can observe the gener-
ated shapes in a virtual reality environment with a head-mounted
display.

4.2 Selection of Keyposes
Keypose visualization is a common and useful approach to under-
standing motion [Assa et al. 2005; Yasuda et al. 2008]. However,
especially when there are many input motions, displaying all the
keyposes of all motions makes it hard to see them. The range of
poses at each key timing should be shown by drawing the minimum
number of poses, as shown in Figure 2.

To solve this issue, our method chooses a few keyposes from
the keyposes of all input motions for each keypose timing. More
speci�cally, one primary keyposepp and a few secondary keyposes
psi are chosen from the keyposespi 2 Ps from all input motions.
The selected keyposes can be drawn as stick �gures, as explained
in Section 3.

The primary keypose should be the center pose of the all key-
poses. Therefore, the keypose for which the sum of distances to
other keyposes is the smallest is chosen as the primary keypose.
That is,

pp = argminpp

Õ

pi 2K

D¹pp; pi º; (1)

wherepi is one keypose in the set of all keyposesK andD¹pi ; pi º is
the distance function between two poses. The distance is computed
as the average distance between all the body parts of the two poses
after the position and orientation of the poses are aligned by a
transformation matrixT. It is calculated as

D¹pi ; pj º =
1
n

Õ

k 2B

jpk
i � Tpk

j j; (2)

whereB is the set of alln body parts andpk
i andpk

j denote the
positionsk-th body part in the two poses.

The secondary keyposes should show the boundaries of the
keyposes. Therefore, we choose the combination of keyposesS =
ps1; � � � ; psm for which the sum of distances to the primary keypose
as well as the distances to each other is the largest as the secondary
poses.

S = argmaxS2K f D¹pi ; ppº +
Õ

pi ;p j 2S

D¹pi ; pj ºg (3)

Finding such a combination of secondary posesS 2 K is consid-
ered to be a NP-hard problem. However, as long as the numbers of
n andm are small (particularlym), the computational speed is not
a problem in our experiments, even with a brute-force approach. If
the numbersn andm become large, some approximation and/or op-
timization algorithms can be introduced for facilitating the process,
although this is not explored in this paper.

The number of secondary posesm can be either speci�ed by the
user or determined based on a speci�ed threshold for the sum of
distances in Equation 3. In our experiments, we took the former
approach and usedm = 2, because determining an appropriate
threshold is not straightforward. As a result, three poses were
chosen for each of the three key timings in our results (Figures 1
and 2).

4.3 Generation of Spatial Volumes
A series of time-varying positions of a body part in a motion can be
represented by a trajectory. However, drawing the trajectories from
all input motions makes it hard to see the range of all trajectories,
as shown in Figure 3 (a). To solve this issue, our method generates
a geometrical shape that contains the trajectories from all input
motions for each body part, as shown in Figure 3 (b).

It generates a surface such that the distance to the closest tra-
jectory is a constant value. The distance function is de�ned by the
minimum distance to the closest sample points on all the trajecto-
ries. That is,

V¹pº = minpi j 2P jp � pi j j; (4)

wherep is an arbitrary point in the space andpi j is j -th point of
i -th trajectory in all sample pointsP.

To generate a surface, we employ the marching cubes method
[Lorensen and Cline 1987], which is a conventional method for
surface generation de�ned by a distance function. It generates a
surface by connecting the faces generated for each small voxel in a
3D grid. In our experiments, the size of voxel is set to0:05m and
the surface distance is set to0:05m.

Because the trajectories are represented by a series of positions,
the generated surface may become bumpy, especially when the dis-
tances between adjacent sample points are large. As postprocessing,
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