
Generating Animation from Natural Language Texts and
Framework of Motion Database

Masaki Oshita
Kyushu Institute of Technology

680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
e-mail: oshita@ces.kyutech.ac.jp

Neo waves to Jack. At the same time, Jack takes the red bottle. Jack hits Neo with it.

wave

take hit

Neo

Jack

locomo

locomo

stagger

locomo

(a) Input text

(b) Output motion timetable (c) Generated animation

time
Figure 1. Example of our system. (a) Input text. (b) Searched motion clips and their execution timings. (c) Generated animation.

Abstract— This paper presents an animation system that
generates an animation from natural language texts such as
movie scripts or stories. We also propose the framework of a
motion database that stores many motion clips for various
characters. When an input text is given, the system searches
for an appropriate motion clip from the database for each
verb in the input text. Temporal constraints between verbs
are also extracted from the input text. The searched motion
clips are scheduled based on these temporal constraints. In
addition, when necessary, some automatic motions such as
locomotion, taking an instrument, changing posture, and
cooperative motions are searched from the database. An
animation is then generated using an external motion
synthesis system. Using our system, users can make use of
existing motion clips. Moreover, because it takes natural
language text as input, even novice users can use our system.

Keywords-component; computer animation, motion
database, natural language processing.

I. INTRODUCTION
Recently, computer animation has been widely used in

movies, video games, TV programs, web graphics, etc.
Because computer animation is a very powerful tool to
present a story, drama, or instruction, there are demands
from non-professional people to create computer
animation. However, it is a difficult task because of two
main issues. The first issue is the difficulty of making and
reusing motion data. Currently, motion data are mainly
created using motion capture or keyframe techniques.
Either way, they are very time consuming and require
professional skills. Although there are demands for reusing
existing motion data, this is difficult because of the lack of
a system for storing and searching large amounts of motion
data. Because there can be various motions of various
characters, it is difficult to manage them in a standard file
system or database. Currently, most motion data are
created from scratch for individual scenes and are thrown

away without reuse. The second issue is the limitation of
current animation systems. A computer animation can be
created by combining a number of existing motion clips
using animation software such as MotionBuilder, Maya,
3ds Max, etc. However, it is difficult for novice users to
utilize such software, because handling motion data is
tricky and these systems require training.

To address these issues, we developed an animation
system that generates an animation from natural language
texts such as movie scripts or stories (Fig. 1). We also
developed a motion database that stores many motion clips
for different characters. When an input text is given, the
system searches for an appropriate motion clip from the
database for each verb. Temporal constraints between
verbs are also extracted from the input text. The searched
motion clips are scheduled based on the temporal
constraints. In addition, when necessary, some automatic
motions such as locomotion, taking an instrument,
changing posture, and cooperative motions are searched
from the database. The system outputs a motion timetable
which consists of motion clips and their execution timings.
An animation is then generated using an external motion
synthesis system. Using our system, even novice users can
create animation by making use of existing motion clips.

There are many possible applications of our system.
Recently, in movie production, simple animations are
created before production to check camerawork,
screenplay, necessary visual effects, etc. These animations
are called “previsualization” or “animatics”. They are also
often created for the scenes in which no computer graphics
are involved. Using our system, even directors or writers
who are not professional animators can create an animation
very quickly. Moreover, our system can be used by non-
professional people who want to make an animation but do
not have professional skills. It can also be used for children
to visualize a story to make it interesting and easy to
understand. Our system can be used for movie production.

2009 International Conference on CyberWorlds

978-0-7695-3791-7/09 $26.00 © 2009 IEEE

DOI 10.1109/CW.2009.46

146

2009 International Conference on CyberWorlds

978-0-7695-3791-7/09 $26.00 © 2009 IEEE

DOI 10.1109/CW.2009.46

146

Even though animators want to add more details to the
output of our system, our method is much easier than
making animations from scratch.

In this paper, we propose a motion frame that contains
meta-information about a motion clip, an object-oriented
database framework for storing a number of motions of a
number of characters in a hierarchical structure, natural
language analysis methods that are specialized for
extracting motion related descriptions from an input text,
and scheduling of multiple motions based on the temporal
constraints in an input text. In addition, we have done
preliminary experiments which showed that our system
generates expected results from various input texts.

The rest of this paper is organized as follows. Section
II reviews the related work in the literature. Section III
gives an overview of our system. Section IV, V, and VI
describe our methods for the framework of the motion
database, motion search and motion scheduling,
respectively. Section VII shows some experimental results
and discussions. Finally, Section VIII concludes the paper.

II. RELATED WORK
Generating animation from natural language texts has

been a challenge. Many research groups have tackled this
problem. The SHRDLU system, which was developed by
Winograd [1], is known as the pioneer. Using SHRDLU, a
user can give commands to a robot using English in an
interactive manner, and make it arrange objects in a scene.
However, the types of commands were very limited.

Badler et al. [2][3] developed virtual agents that follow
natural language interactions. They proposed
Parameterized Action Representation (PAR), which has a
similar purpose to the motion frame in our research. The
PAR has more complex information such as pre-condition
and achievement. The motion generator of each PAR is
programmed using a state machine. It can use motion data
or any motion generation methods. However, specifying
detailed information and constructing motion generators
are very time consuming.

Tokunaga et al. [4] developed the K2 system, which
has similar goals to Badler et al. In their system, agents are
controlled via spoken language. Their research is rather
focused on solving the vagueness of natural language
instructions. They use case frames [5] to search for
motions. Unlike our work, they use all cases that are used
in linguistic analysis. The interpretation of each case is left
to the user who adds the case frame handler. The motion
generator for each case frame must be manually
programmed by the user.

These previous works aim at developing intelligent
agents that understand natural language instructions and
make plans to execute them. However, the systems are
very complex, and many rules are required. On the other
hand, our system aims to reuse existing motion data easily
and efficiently. The motion frame in our work contains just
enough information to search for appropriate motions that
match natural language texts and it is easy to describe. We
believe that our system is more practical.

Sumi et al. [6] developed a system for visualizing short
stories for children. The system extracts keywords from an
input text, and chooses an appropriate scene, characters,
and motions from a database. It simply plays a motion that
matches the keywords. Although a user can add motion

data to the system, the system cannot select motions
appropriate for the objects or characters and cannot
generate interactions between characters and the scene.

There is very little research that deals with motion
scheduling from natural language texts. The above systems
simply execute motions as instructions are given or events
happen, and no scheduling is considered. However, in
order to execute multiple motions of multiple characters as
instructed by an input text, the execution timing of the
motions must be coordinated. Baba et al. [7] developed a
system for generating an animation that satisfies temporal
and spatial constraints given by natural language texts. The
system determines appropriate initial positions of the
agents and objects that are specified in the input text.
However, the motions of the agents and motion scheduling
were not considered.

Coyne and Sproat [8] developed WordsEye, which
converts natural language texts to a scene. Because their
purpose is to generate a still image, when a character
motion is indicated in a given text, the system simply
chooses a pose for the action from the database.

There are animation engines that support some script
language such as Improv [9] and Alice [10]. However, it is
still difficult to program the agents and to make use of a
large amount of existing motion data. In addition, markup
language formats for describing animation including
scenes, characters and actions have been proposed [11][12].
However, they are difficult to describe by hand. The
animation files should be created by using specific
authoring software. Moreover, it is difficult to add and
reuse motion data using such file formats and authoring
software.

There are many motion synthesis methods which
generate new motions from a small number of motions
[13][14]. However, they require a manual setup for each
motion module. It is difficult for end users to add new
motion modules. Although currently our system selects
one motion from the database, it is possible to extend our
system to blend a number of selected motions based on
quantitative motion query parameters such as contact
position.

III. SYSTEM OVERVIEW
In this section, we explain the overview of our system

(Fig. 2) and data representation (Fig. 3).
When an input text is given to the system, natural

language processes (syntax analysis and semantic
analysis) are applied first. The syntax analysis is the
process of converting a plain text to a tree structure with
phrase tags and dependencies. Fig. 3(b) is an example of
the analyzed tree which is computed from an input text
(Fig. 3(a)). The type of each phrase and the dependency
between phrases are determined. For example, S, NP, VP
and PR in Fig. 3(b) represent sentence, noun phrase, verb
phrase and preposition, respectively.

The semantic analysis extracts information about
motions described in the input text from the tree structure.
A query frame contains information for the motion search.
One is generated for each verb in the text. The temporal
constraints contain information about execution timing
between verbs. For example, QF1~QF3 and TC1~TC2 in
Fig. 3(c) represent query frames and temporal constraints,

147147

Input Text

Syntax Analysis

Semantic Analysis

Analyzed Tree

Query Frames

Temporal Constraints

Motion Scheduling

Motion Search

Motion Synthesis

Scheduing Information
+ Query Frames

Scheduing Information
+ Motion Clips

Animation

Scene Information
Characters and Objects

Motion
Database

Figure 2. System overview

Neo waves to Jack. At the same time, Jack takes the red bottle. Jack hits Neo with it.

Neo waves to Jack. At the same time, Jack takes the red bottle. Jack hits Neo with it.
NP

VP

NP
PP

S

NP
VP

NP
S

NP
VP

NP
PP

S

QF1
agent: Neo
motion: wave
target: Jack

QF2
agent: Jack
motion: take
target: red bottle

QF3
agent: Jack
motion: take
target: Neo
instrument: red bottle

TC2
Serial
QF2 -> QF3

TC1
Synchronized
QF1 = QF2

QF1

QF2 QF3

Neo

Jack

wave

take hit

Neo

Jack

locomo

locomo

stagger

locomo

(a) Example of an input text

(b) Analyzed tree

(c) Query frames and temporal constraints

(d) Scheduling information and query frames

serial
synchronized

(e) Output motion timetable
 (Motion clips and their execution timings)

time

NPNP
PP

Figure 3. Example of data representation.

respectively.

Based on the temporal constraints, motion scheduling
determines the execution order of each motion clip, which
corresponds to each query frame as shown in Fig. 3(d).
Note that exact execution times are not decided at this
point, because the duration of each motion is not known
until motion clips are searched from the database and
automatic motions are added later.

The motion search is applied for each query frame. In
addition, when it is necessary, automatic motions are
inserted before the motion. Finally, motion clips and their
execution timings are passed to the motion synthesis
module as a motion timetable, as shown in Fig. 3(e).

The motion synthesis generates an animation by
smoothly connecting given motion clips. The interactions
between characters and between a character and objects
are handled by this module based on the information that
the motion clips have.

The scene information contains characters and objects
and their initial postures. Currently, our system supposes
that the scene information is provided by the user.

The scope of this paper is the components in the dotted
box in Fig. 2. There are many tools for syntax analysis that
can be used with our system. The Stanford parser [15] is
used for our implementation. For motion synthesis, our
system uses an external animation system [16]. The system
generates continuous motions from given motion clips and
their execution timings. The system determines an
appropriate synthesis method for each transition based on
the constraints between the foot and the ground during
motions. Alternatively, another commercial animation
system such as MotionBuilder, Maya, 3ds Max, etc. can be
used.

IV. MOTION DATABASE
In this section, we describe the representation of

motion data. We first explain the case frame that is used
in natural language processing. Then, we explain our
motion frame, which is inspired by the case frame. We
also describe our database of characters and motions.

A. Case Frame
The idea of a case frame was proposed by Fillmore [5].

A case frame represents the role of a verb. Each case of a
case frame is a phrase that represents an aspect of the verb.
Typically a case frame has the following cases:

• Agent: the person who performs the motion.
• Experiencer: the person who experiences

something.
• Object: the object that an effect is caused to during

the motion.
• Instrument: the object that causes an effect during

the motion.
• Source: the source or origin of the motion.
• Goal: the goal or target of the motion.
• Time: the time when the motion is performed.
• Location: the location where the motion is

performed.
Each case needs to be a specific type of entity. Some

cases are mandatory for some verbs. A verb that has
different roles depending on context has multiple case
frames.

In general, natural language processing systems, a
procedure to select a case frame for an input text is as
follows. First, based on the types and dependency of
phrases in the analyzed tree, candidate cases of each
phrase are determined. By searching for case frames that

148148

match the candidate cases, the most appropriate case
frame and all its cases are determined.

The case frame is a good way to extract and represent
the meanings of texts. The case frame is widely used in
many research papers such as [4][8]. However, the case
frame is not suitable for representation of motion data for
animation. From the view point of motion representation,
each case has different roles depending on case frames.
For example, the “object” case of a case frame could be
an object that the character uses or another character that
the character’s motion causes an effect on. Moreover, the
case frame does not contain information about postures
and contact positions, which are important for selecting
motions.

B. Motion Frame
We propose a motion frame, which contains the

information about a motion clip. The motion frame is
inspired by the case frame. However, we define the items
of the motion frame based on importance when we search
for a motion according to input texts.

There are many kinds of verbs in general English.
However, our system handles only action verbs that
involve a physical motion, in other words, verbs that can
be visualized as an animation. Other kinds of verbs such as
non-action verbs (e.g., “think”, “believe”) or state verbs
(e.g., “know”, “exist”) are ignored in our system, because
they are difficult to represent by a motion clip. Action
verbs are categorized into intransitive, transitive, and
ditransitive verbs. Intransitive verbs involve no other
object (e.g., “he runs”). Transitive verbs include one target
object/character/position (e.g., “he opens the door”, “he
hits her”, “he walks to the door”). Ditransitive verbs
include two target objects (e.g., “he gives her the book”,
“he cuts the bread with a knife”). For distractive verbs, one
of the two target objects should be the object that the
character possesses. We call such objects “instruments”.
Therefore, action verbs have at most one “target” object
/character/position and at most one “instrument” object.
We use them as items of a motion frame instead of cases in
a case frame. In addition, contact position is used to select
a motion that fits the environment and previous motions.

The items of the motion frame are as follows. An
example of a motion frame is shown in Fig. 4. Note that
some items may not have any value depending on the
motion.

• Agent _agent refM : The reference to the character in
the database who performs the motion.

Item Value
Agent human
Motion take, pick up, get

Instrument NULL
Target appropriate size and weight ranges

Contact Position hand position of contact
Initial Posture standing

Adverbs slowly
Figure 4. Example motion frame of “taking-an-object”

• Names of motion _motion stringsM : The set of verbs
that represent the motion. When a verb in the input
text matches one of the motion names, the motion
frame will be a candidate for the verb. In order to
handle ambiguity, a motion frame may have
multiple names. For example, a “taking-an-object”
motion may have “take” and “pick up” as its
names.

• Instrument instrument_refM , instrument_paramsM : The
object that the character uses in the motion. This is
either a reference to an object in the database

instrument_refM or the size and weight ranges of an
object instrument_paramsM . If the motion requires a
specific object such as “cutting with a knife”, the
object should be specified as a reference to the
instrument. Otherwise abstract conditions of an
object are specified. For example, if the motion is
“poking something with a long object”, then
appropriate size and weight ranges of the object
are specified.

• Target: The reference to an object target_refM or the
size and weight ranges target_paramsM are specified in
the same way as the instrument. If the target is a
character, the reference to the character is
specified in target_refM .

• Contact position _contact virticalM , contact_horizontalM : the
position of the end-effector when it contacts the
target. Vertical and horizontal positions are
handled differently. Because the horizontal
position can be adjusted by lateral movement (see
Section VI.C), vertical position is more important
for motion selection. The contact position is
automatically computed from the contact
information (see Section IV.C). For example, if
multiple “taking an object” motions are in the
database and an input text “he takes the bottle on
the ground” is given, then based on the position of
the bottle, the appropriate taking motion (e.g.,
“taking an object with squatting”) will be selected.

• Initial posture _ _initial posture flagM : the character’s
posture when the motion begins. Currently, it is
represented as one of three states: standing, sitting,
or laying down. The initial posture is used to select
a motion that matches the terminal posture of the
previous motion. In cases where no such motion is
in the database, an automatic changing posture
motion will be added (see Section VI.C).

• Adverbs _adverb stringsM : The set of adverbs
represent the style of the motion such as “slowly”
or “happily”.

Each item of motion frames must be specified by a user.
However, this is not such a difficult task for users. For
each motion frame (each motion clip), the user is asked to
specify the agent, verbs, target, and instrument. The agent
is selected from the character database. For the target and
instrument, it is either an appropriate object or agent that is
selected from the database or the size and weight range of
an object. When the motion involves a specific object (e.g.,
“cutting with a sword”), the object should be selected.

149149

Otherwise, object conditions are specified (e.g., “lifting up
a light object using one hand”). The contact position is
automatically computed form the motion and its contact
information (see Section IV.C). The initial posture is also
automatically computed from the motion clip. As a result,
specifying the items of a motion frame is very easy.

C. Motion Data
Our system supposes that each motion is short and

simple. A complex motion is difficult to represent by a
motion frame. If a user wants to add a long motion to the
database, the motion should be divided into pieces.

Some motions involve an interaction with an object or
a character. This information is very important for
generating animation and for selecting motions. Therefore,
it is specified on the motion frame. The contact
information consists of the contact type (hold, release, or
hit), contact time (local time in the motion clip) and the
end-effector (e.g., right hand). This information is also
necessary for generating animation in the motion synthesis
module (see Section V.C).

Some motions that interact with another character
cause the reaction of the other character (e.g., “Jack hits
Neo. Neo falls”). Usually such cooperative motions are
captured or created at the same time but are stored as
separate motion clips. In our system, such cooperative
motions are specified on the motion frame. If a motion has
cooperative motions and no cooperative motion is
indicated in the input text, the system automatically
executes a cooperative motion (see Section VI.C). In
addition, when two cooperative motions include physical
contact, the timings and the initial positions of these
motions are coordinated (see Section VI.A).

D. Character and Motion Database
We use an object-oriented framework for the character

and motion database. As shown in Fig. 5, each character is
considered to be an object that has various motions as its
methods. A character is inherited from a base character. A
motion of the base character can be overridden by another
motion. The motions that are not overridden are used as
the motions for the derivative character. In this way, the
hierarchy of characters and their motions are efficiently
managed.

Figure 5. Example of a hierarchical database of characters.

When a user wants to create a new character, they can
simply add the new character that is inherited from a base
character in the database and add character-specific
motions to that character. Even if they do not have many
new motions for the new character, the motions of the base
characters are used. In this way, users can add new
characters very easily.

The database can be implemented in various ways. If
the characters and motions are implemented using an
object-oriented programming language (e.g., C++ or Java),
we would represent motions as objects rather than methods
and implement a mechanism of motion inheritance on the
character class, because it is practically difficult to handle
motions as methods using such programming languages.

V. MOTION SEARCH
In this section, we explain how to search for an

appropriate motion for each verb in an input text. Handling
of multiple verbs and motions is explained in the next
section.

A. Query Frame
To select a motion that matches an input text, we use a

query frame, which has the same items as the motion
frame, and its items are determined by analyzing the
syntax tree of the input text (see Fig. 3(b)). Scene
information is also used to determine some items.

Although natural language processing techniques have
advanced in recent years, it is still a challenge to
understand general texts, because it requires not only
language processing but also a large knowledge of the
world. However, our system is supposed to take script-like
text and only motion-related descriptions in the text matter.
This makes the natural language analysis much easier than
general natural language processing systems such as
machine translation or summarization systems. Moreover,
because scene information, such as characters and objects,
is given in advance, we do not need the same large
dictionary required by general natural language processing
systems.

As explained in Section IV.B, unlike generic semantic
analysis, motion searches only need a target and an
instrument for each verb. Therefore, we determine these by
applying the following rules for each verb in an input text.

• If a noun represents a character in the scene and
the verb is dependent on the noun, the character is
considered as the agent (subject) of the query
frame _agent refQ .

• If two nouns are dependent on the subject that the
verb is related to, they are considered as the target

target_refQ and the instrument instrument_refQ . (e.g., In
“Jack gives Neo the book”, “Neo” is the target and
“the book” is the instrument.)

• If only one noun is dependent on the subject, it is
considered as the target target_refQ .

• If a preposition phrase (e.g., “to Neo”) is
dependent on the subject, it is considered as the
target target_refQ or the instrument instrument_refQ
depending on the preposition. If the preposition is
“with” and the noun in the phrase represents an

150150

object, the object is used as the instrument.
Otherwise, the noun is used as the target.

• If the character is holding an object, the object is
also used as instrument_refQ , even if it is not specified
in the input text.

After the names of the target and instrument are
determined, we obtain the reference or value of each item
from the scene information. We suppose that the characters
or objects in input texts always exist in the scene.
Therefore, unlike general semantic analysis, by looking up
the scene information all nouns in input texts are
determined.

The target character or object that is indicated in the
input text is searched from the scene information and the
reference and position are set to the query frame. When the
target is a character and a body part is indicated in the text
such as “She hit him in the head”, the reference and
position of the body part is set. When the target is an
object in the scene, the target size and weight are set in the
query frame. The instrument object that is indicated in the
input text is also set to the query frame.

B. Evaluation of Motion Frame
Based on the query frame from an input text, a motion

frame that best matches the query frame is searched from
the database. The motion search is done in three steps.

In the first step, all candidate motion frames in which
the motion name and agent match the query frame are
selected from the database. Any motion frames that have
the agent character or its base characters can be candidates.

In the second step, the motion frames whose items do
not match the query frame are excluded from the
candidates. If the query frame has a target target_refM ,
or target_paramsM and/or an instrument instrument_refM , or

instrument_paramsM but a motion frame does not, then it is
excluded. Moreover, if a motion frame has target
parameters, instrument parameters, or the vertical contact
position, and the values of the query frame exceed the
specified ranges, then that motion frame is also excluded.

In the third step, all candidate motion frames are
evaluated based on the similarity between the motion
frame and the query frame items using the following
equation:

()
()
()
()

0

1

2

3

4 _ _ _ _

,

,

,

,

,

target_params target_params

instrument_params indtrument_params

contact_virtical contact_virtical

contact_horizontal contact_horizontal

initial posture flag initial posture

E w R M Q

w R M Q

w D M Q

w D M Q

w F M Q

=

+

+

+

+ ()
()
()

5

6 _ _

,

,

flag

adverbs adverbs

agent ref agent ref

w A M Q

w H M Q

+

+

 (1)

where () () () () (), , , , , , , , ,R M Q D M Q F M Q A M Q H M Q are
the functions that compute normalized distance (0.0~1.0)
between size and weight parameters, contact positions,
posture flags, adverbs, and hierarchical positions,
respectively. The distances between the size and weight

range of the motion frame and the object size and weight
of the query frame are computed so that the distance
becomes zero when the values are at the center of the
range and the distance becomes one when the values are at
the edge of the range. The distances between posture flags
and adverbs are computed so that the distance is zero when
they match and otherwise the distance is one. The distance
between hierarchical positions of the characters is
computed from the number of inheritances between them
(see Fig 5). The candidate motion frame whose evaluation
is the smallest will be selected and used for animation.

0w ~ 6w are weight parameters. They can be set for each
motion frame in the case that some items are important for
the motion. In our current experiments we use 1.0 for all
weights of all motions.

C. Motion Modification
The motion clip of the selected motion frame is used

for animation. However, even if the closest motion frame
is selected, the contact position may not exactly match the
query frame. In that case, the motion clip is modified using
inverse kinematics. The posture of the character during the
motion is modified so that the contact position of the end-
effector (e.g., hand) matches the target position in the
query frame.

When the character is far from the target, changing the
end-effector position is not enough. In addition, when the
character executes the selected motion it may need to first
take an instrumental object or change its posture (e.g.,
standing up). These cases are handled by adding automatic
motions before the selected motion instead of modifying
the selected motion. Automatic motions are explained in
Section VI.C.

VI. MOTION SCHEDULING
In this section, we explain how our system handles

multiple motions from an input text. Basically, the system
searches for a motion for each verb in the input text.
However, in order to make an animation, the execution
timing of each motion must also be determined. Moreover,
the continuity of motions should be considered. For
example, when a character makes contact with an object in
the scene, the character must first move close to the object.
Our system takes care of this kind of continuity of motions.

When multiple characters perform multiple motions the
motions should be scheduled. However, an exact execution
time for each motion is not usually specified in the input
text. In order to determine the motion schedule, we need
information about the motions such as duration and contact
information.

Our motion schedule works as follows. First, temporal
constraints are extracted from input texts in addition to
query frames (Section VI.A). Second, query frames are
roughly scheduled based on the temporal constraints
(Section VI. B). Note that at this point, only process orders
of query frames are determined. Finally, by searching for a
motion frame that matches each query frame in order of
process, the execution timing of each motion is
determined. When automatic motions are required to be
executed before a motion, they are added incrementally
(Section VI.C). By repeating this process for all query
frames, the motion clips and their execution timings are
determined.

151151

A. Temporal Constraints
Temporal constraints are extracted from input texts.

The types of temporal constraint are serial execution or
synchronized execution between two verbs. A serial
execution constraint has the execution order of two
motions. A synchronized execution constraint has relative
execution timing. Temporal constraints are generated from
a syntax tree as follows:
1. For all pairs of sequential verbs in the input text, serial

execution constraints are assigned. For example, when
the input text “Jack walks in the room. Neo stands up.”
is given to the system, a serial execution section
constraint (Jack, walk) to (Neo, stands up) is generated.

2. When a word that indicates a reverse order exists in
the input text (e.g., “after”), the order of the serial
execution constraint is reversed. If a serial execution
constraint is already created, the old constraint is
overridden. For example, when the input text “Jack
walks in the room after Neo stands up.” is given to the
system, a serial execution constraint (Neo, stands up)
to (Jack, walk) is generated.

3. When a word that indicates synchronization exists in
the input text (e.g., “at the same time” or “while”), a
synchronized execution constraint is added. If there is
a conflicting constraint, it is overridden. For example,
when the input text “Jack walks in the room. At the
same time, Neo stands up.” is given to the system, a
synchronized execution constraint (Neo, stands up)
and (Jack, walk) is generated. The relative timings
between two motions are set to zero so that they start
at the same time.

4. When the motions of two characters are cooperative
motions and they include contact with each other, a
synchronized execution constraint is added and the
relative execution timings of the two motions are
determined based on their contact information (Section
4.3). For example, when the input text “Jack hits Neo.
Neo falls” is given to the system, a synchronized
execution constraint (Jack, hit) and (Neo, fall) is
generated. At this point, the relative timings are not set.
They will be set based on the contact times in the
searched motion data, when the motions are searched
later.

B. Scheduling Query Frames
Based on temporal constraints, the query frames are

scheduled roughly at first. After that, the process order of
all query frames (verbs) is determined. For motions that
have a synchronized execution constraint, their process
orders are temporarily set as one of them being processed
first. The exact timings of all query frames are determined
in the process order.

For each query frame, a motion clip is searched from
the database as explained in Section V.B. Before searching
each motion, the scene condition is set to the time when
the motion is executed because the selected motion may
change depending on the position of the character or object
that the motion involves. The execution timing of the
motion is determined based on the duration of the selected
motion. The next motion is started just after the previous
motion is finished if they have a serial execution constraint.

If they have a synchronized executing constraint, their
execution timings are determined based on the contact
timings of the selected motions.

This process is repeated from the first motion to the
last. When multiple query frames are synchronized based
on the temporal constraints, the motions for all query
frames are searched and their execution timings are
delayed until all constraints are satisfied.

C. Automatic Motions
During the motion scheduling and motion search, a

searched motion can sometimes not be executed. In that
case, automatic motions are generated and added before
the searched motion. As explained earlier, the purpose of
our system is to reuse motion data without complex
motion planning which may require additional
programming for each motion. Therefore, our system
deals with minimum automatic motions. The additional
motions are also selected from the database. Therefore,
each character is easily customized by adding specific
kinds of motion to the database without adding any rules
or modules.

If a motion includes interaction with another character
or an object in the scene (i.e., a query frame contains a
target object or character), the character has to be in the
right place for contact with the object or character. If not,
the system automatically adds motions for the character to
move to the right place using simple rules. The system
adds ‘turn to the target’, then ‘step’ or ‘walk’, and ‘turn to
the target’ in this order, if they are judged to be necessary
by the character’s position and orientation.

When a character uses an instrument in a motion (i.e., a
query frame contains an instrument and the character does
not hold it), the character should pick up the instrument
object before they use it. When a motion to take the
instrument is not explicit in the input text, a ‘take’ motion
is selected from the database. When the character is away
from the instrument, locomotive motions are also added
before the taking motion.

For motion searches, if there is no candidate motion
whose initial posture matches the terminal posture of the
previous motion (i.e., the initial posture of a query frame
does not match any of the candidate motion frames), a
changing posture motion such as standing up is added. In
this case, all motions that include a state change will be
candidate motions.

As explained in Section VI.A, when a motion involves
interaction with another character, a cooperative motion of
the other character follows. When a selected motion frame
has cooperative motions and any of them are not indicated
in the input text, the default cooperative motion and a
temporal constraint of the motion frame are automatically
added.

VII. EXPERIMENT AND DISCUSSION
We have implemented our method and motion

database. Currently, the system has six characters as shown
in Fig. 5 and about 50 motions that are collected from a
commercially available motion capture library. We have
tested our system with some short sentences and found that
an appropriate motion was selected from each sentence

152152

even though the same verb is used in different sentences.
An example of the generated animation is available at
author’s web site (http://www.cg.ces.kyutech.ac.jp/).

In order to evaluate our framework, we tested it with a
published movie script (The Matrix, 1999). Because our
motion database does not yet have enough data, we
checked if our system could handle the descriptions in the
movie script and output appropriate query frames. There
were about 830 actions (verbs) in the script. We found that
about 78% of them were processed by our system without
any problem. However, 8% required additional language
processes such as one verb representing multiple motions
(e.g., “take A and B”, “do A twice”, or “they look each
other”), pronouns (e.g., “they”, “it”, or “everyone”),
infinitives (e.g., “he try to stand up”) and passive verbs.
5% were verbs that cannot be represented by a motion
(e.g., “miss” in “he shoots her and misses”, vague
representation such as “he stares into the darkness”). 5%
were verbs for representing initial states in the scene but
not actions (e.g., “they are dead”, “he stands”). 4% were
actions representing locomotion but no specific position
(e.g., “he walks away”). As we discuss later, a non-text-
based interface is suitable for specifying initial states or
positions of locomotion. There were also descriptions for
motions of objects. Currently our system cannot handle
object motions. However, it is possible to extend our
system to handle them, because they are simpler than
human motions.

The fundamental principle of our framework is to make
use of motion data without requiring any additional motion
specific rules. Currently, our system does not support high-
level motion planning such as automatically dividing
complex motion into small motions or path planning with
object avoidance. Because we use simple rules for
automatic locomotion, the resulting animations are not so
natural. This can be solved by adding more motion data
and some sophisticated modules that generate new motion
from a number of motion data sources such as [14].

Our system supposes that scene information such as the
positions of objects and characters is given by a user. The
existing text-to-scene system [8] can be integrated with our
system. However, specifying the positions using natural
language can be harder than using a conventional mouse-
based interface. So can specifying locomotion path. From a
practical viewpoint, a hybrid of a text-based interface and a
conventional interface might be more useful.

With our current system, if the user is not satisfied with
or wants to change an output motion, they must change the
input text and they cannot change the output motions
directly. To address this, we are going to develop a natural
language-based motion editing interface with which a user
can change generated motions interactively by giving
instructions to agents, as real directors do with actors.

VIII. CONCLUSION
We have proposed an animation system that generates

animation from natural language text such as movie scripts
or stories. Our future work includes the expansion of both
the system and the motion database. Currently, making
animation is very difficult, especially for nonprofessional
creators. We believe that our system will solve this issue
and provide many creators with a way to express their
stories as animation.

REFERENCES
[1] Terry Winograd. Understanding Natural Language. Academic

Press, 1972.
[2] N. Badler, R. Bindiganavale, J. Allbeck, W. Schuler, L. Zhao, and

M. Palmer. “Parameterized action representation for virtual human
agents”, In Embodied Conversational Agents, pp. 256-284, 2000.

[3] R. Bindiganavale, W. Schuler, J. Allbeck, N. Badler, A. Joshi, and
M. Palmer. “Dynamically altering agent behaviors using natural
language instructions”, In Proc. of Autonomous Agents 2000, pp.
293-300, 2000.

[4] Takenobu Tokunaga, Kotaro Funakoshi, and Hozumi Tanaka. “K2:
animated agents that understand speech commands and perform
actions”, In Proc. of 8th Pacific Rim International Conference on
Artificial Intelligence 2004, pp. 635-643, 2004.

[5] Charles J Fillmore. The case for case. In Universals in Linguistic
Theory, pp. 1-88, 1968.

[6] Kaoru Sumi and Mizue Nagata. “Animated storytelling system via
text”, In Proc. of International Conference on Advances in
Computer Entertainment Technology, 2006.

[7] Hiromi Baba, Tsukasa Noma, and Naoyuki Okada. “Visualization
of temporal and spatial information in natural language
descriptions”, Transaction on Information and Systems, E79-D(5),
pp. 591-599, 1996.

[8] Bob Coyne and Richard Sproat. “Wordseye: an automatic text-to-
scene conversion system”, In Proc. of SIGGRAPH 2001, pp. 487-
496, 2000.

[9] Ken Perlin, and Athomas Goldberg, "Improv: A System for
Scripting Interactive Actors in Virtual Worlds", In Proc. of
SIGGRAPH '96 Proceedings, pp. 205-216, 1996.

[10] Matthew J. Conway. Alice: Easy-to-Learn 3D Scripting for
Novices, PhD Dissertation, University of Virginia, 1997.

[11] Masaki Hayashi, Hirotada Ueda, Tsuneya Kurihara, Michiaki
Yasumura, “TVML (TV program Making Language) - automatic
TV program generation from text-based script –”, In Proc. of
Imagina '99, pp. 84-89, 1999.

[12] Hyunju Shim, Bo Gyeong Kang, “CAMEO - Camera, audio and
motion with emotion orchestration for immersive cinematography”,
In Proc. of International Conference on Advances in Computer
Entertainment Technology (ACE) 2008, pp. 115-118, 2008.

[13] C. Rose, M. F. Cohen, and B. Bodenheimer. “Verbs and adverbs:
Multidimensional motion interpolation”, IEEE Computer Graphics
and Applications, vol. 18, no. 5, pp. 32-40, 1998.

[14] Lucas Kovar and Michael Gleicher. “Automated extraction and
parameterization of motions in large data sets”, ACM Transactions
on Graphics, vol. 23, no. 3, pp. 559-568, 2004.

[15] Dan Klein and Christopher D. Manning. “Fast exact inference with
a factored model for natural language parsing”, In Advances in
Neural Information Processing Systems 15 (NIPS 2002), pp. 3-10,
2003.

[16] Masaki Oshita. “Smart motion synthesis”, Computer Graphics
Forum, vol. 27, no. 7, pp. 1909-1918, 2008.

153153

